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Abstract

Medium-to-large mammals within tropical forests represent a rich and functionally diversified component of this biome;
however, they continue to be threatened by hunting and habitat loss. Assessing these communities implies studying
species’ richness and composition, and determining a state variable of species abundance in order to infer changes in
species distribution and habitat associations. The Tropical Ecology, Assessment and Monitoring (TEAM) network fills a
chronic gap in standardized data collection by implementing a systematic monitoring framework of biodiversity, including
mammal communities, across several sites. In this study, we used TEAM camera trap data collected in the Udzungwa
Mountains of Tanzania, an area of exceptional importance for mammal diversity, to propose an example of a baseline
assessment of species’ occupancy. We used 60 camera trap locations and cumulated 1,818 camera days in 2009. Sampling
yielded 10,647 images of 26 species of mammals. We estimated that a minimum of 32 species are in fact present, matching
available knowledge from other sources. Estimated species richness at camera sites did not vary with a suite of habitat
covariates derived from remote sensing, however the detection probability varied with functional guilds, with herbivores
being more detectable than other guilds. Species-specific occupancy modelling revealed novel ecological knowledge for
the 11 most detected species, highlighting patterns such as ‘montane forest dwellers’, e.g. the endemic Sanje mangabey
(Cercocebus sanjei), and ‘lowland forest dwellers’, e.g. suni antelope (Neotragus moschatus). Our results show that the
analysis of camera trap data with account for imperfect detection can provide a solid ecological assessment of mammal
communities that can be systematically replicated across sites.
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Introduction

Profiling large-bodied animal communities, such as mammals,

fundamentally implies assessing species richness and composition.

Determining a state variable of species’ abundance is also required

to make inferences on species distribution, habitat associations,

and trends over time [1–4]. In this context, medium-to-large

mammals in tropical forests are of priority because they represent

a rich and functionally diversified component of this biome, and

yet they are universally threatened by hunting, and habitat loss

and fragmentation [5–8]. The removal, or decrease in abundance,

of tropical mammals will likely impact forest dynamics [11,12] due

to their direct involvement in seed predation, seed dispersal,

herbivore control, nutrient cycling and other ecosystem functions

[9,10]. Systematic assessments that allow inference of tropical

forest mammal communities in space and time remain limited and

a chronic gap persists in standardized data collection.

The Tropical Ecology, Assessment and Monitoring (TEAM)

network was set-up to fill this gap by establishing a network of field

stations, scientists and partners across the tropics for long-term

monitoring of mammal communities using a standardized and

annually repeated sampling protocol [13]. The excellent potential

of TEAM network data for answering questions on the status and

trends of mammals has already been shown both through the first

pan-tropical analysis from seven sites, which compared commu-

nities’ richness and composition against forest area and fragmen-

tation [8], as well as the first assessment of temporal changes at one

particular site in Costa Rica using dynamic occupancy analysis

[14]. In the present study, we used data from the first TEAM site

established in Africa in 2009, the Udzungwa Mountains of south-

central Tanzania, to propose a standardized approach for

assessing the community of medium-to-large mammals detected

through camera-trapping during the first, baseline year of the

long-term programme.
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The use of camera trapping for wildlife studies has increased

exponentially in the last decade as it is an efficient, cost-effective

and easily replicable tool to study and monitor ground-dwelling

terrestrial mammals and birds [15,16]. Camera trapping is

particularly suited to collect standardized data because sampling

effort can be easily controlled for and sampling design can be

replicated across time and space [15]. In addition, sampling can be

considered as multiple occasions during a discrete season, hence

data are suited for analyses that account for imperfect detection,

such as occupancy [17,18]. Occupancy (y) is defined as the

proportion of area, patches or sites occupied by a species [19] and

can be used as a surrogate for abundance [20]. Detection

probability (p) is defined as the likelihood of detecting an

individual, or species, during a sampling occasion [18]. With the

inclusion of covariates, occupancy models provide a robust

statistical framework for testing scientific hypotheses. For example,

one can test for differences in occupancy rates between study sites

that contrast by habitat type, hunting level, distance to key

resources, climate conditions and vegetation features [21,22]. In

addition, the same approach used for occupancy analysis can also

be used for estimating species richness and accumulation [23].

The Udzungwa Mountains are an area of outstanding

importance for biodiversity endemism and conservation in Africa

[24], and are particularly rich in forest dwelling mammals [25].

Through our assessment we aimed to (1) evaluate sampling effort

and estimate species’ richness, (2) determine drivers of variation in

species richness and detection probability (p) using an occupancy

framework [17], (3) estimate species’ occupancy (y), and (4)

determine the best habitat and human disturbance predictors of

both y and p to identify major patterns of species’ responses to

these predictors.

Materials and Methods

Ethics Statement
Data collection used non-invasive, remotely set camera traps

and hence did not involve direct contact or interaction with the

animals. Fieldwork was done under research permit number 2009-

139-NA-2009-49 to FR, issued by the Tanzania Commission for

Science and Technology (COSTECH).

Study area
The Udzungwa Mountains of south-central Tanzania (over

10,000 km2; 7u409–8u409S, 35u109–36u509E) are a mosaic of moist

forest blocks interspersed with drier habitats. The study was

conducted in Mwanihana forest, which at 180 km2 is one of the

largest forests in the area and with the widest, continuous forest

elevation range (290–2250 m a.s.l.; Fig. 1). The forest is inside the

Udzungwa Mountains National Park (1990 km2). The eastern

border of the forest coincides with the eastern boundary of the

park. The forest habitat broadly ranges east-west from lowland,

deciduous forest to montane, evergreen forest [26]. The lower

elevation habitats, which include deciduous, semi-deciduous and

riverine evergreen forest, have been degraded historically and

have large portions of secondary, regenerating vegetation. The

interior forest is mainly undisturbed with large chunks of pristine,

Figure 1. Map of the study area, the Udzungwa Mountains of south-central Tanzania. The map shows the main habitat types and blocks
with closed-canopy forest (adapted from [53]). The study forest was Mwanihana in the northeastern portion of the range, which is zoomed in inset
(A) where the 60 camera trap sites are shown as white dots and the background is a Digital Elevation Model (dark is lower elevation); (B) shows the
position of Udzungwa in Tanzania.
doi:10.1371/journal.pone.0103300.g001
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closed-canopy moist forest. Anthropogenic disturbance in the form

of firewood collection occurred at the lower elevations, a practice

likely coupled with illegal bush meat hunting done using snares.

The upper elevation zone has lower canopy and bamboo forest

with rocky and very steep areas, especially in the northern part.

Total rainfall in Mwanihana forest is around 1500 mm per year

(data from Udzungwa Mountains National Park); rainfall

measured at 1200 m a.s.l. by an automatic rainfall gauge was

1387 and 1451 mm in 2011 and 2012, respectively (FR/TEAM

Network, unpublished data). The dry season spans from June to

November, while two rainy seasons occur during November-June.

In 2012, mean monthly air temperature at 1200 m a.s.l. ranged

17.2–22.6uC. (FR/TEAM Network, unpublished data).

Data collection
Camera trapping was conducted from July to November 2009,

as the baseline year of the TEAM programme [13]. We used

digital cameras (Reconyx RM45, Reconyx Inc., Holmen,

Wisconsin, USA) set to take photos without delay between

consecutive triggers. Using ESRI’s ArcGIS 10 software, we

designed a regular grid of 60 camera trap locations at a density

of one camera per 2 km2, and placed at random across the forest.

We then conducted a ground survey to select the final camera

positions, and locations that fell in excessively steep, open canopy

or rocky areas were repositioned no more than 100 m from the

original location (Fig. 1).

Camera traps were positioned so the field of view included an

active wildlife trail and then secured to a tree about 2–3 m away

from the trail at an average height of 50 cm and left running for 30

days. Since cameras can run automatically over such period, we

did not check them to avoid unnecessary disturbance. Due to

limits in the number of cameras available and the time needed for

the field team to set cameras, we sampled the 60 points by

deploying three consecutive arrays of 20 camera traps (south,

central and northern Mwanihana, respectively). Therefore, the

data collection lasted 133 days from July 24 to December 4, 2009.

At sampling completion, memory cards were recovered and

images were identified using specialized software (DeskTEAM,

[27]; see also www.teamnetwork.org/en/help-deskteam). A single

taxonomic authority [28] was used across all TEAM sites for

species identification, except for species that were not included in

this reference or species that were re-assessed. The validated and

publicly available data were downloaded from the TEAM portal

(data package id: TV-20111116005138_3515).

Data analysis
We derived standard descriptors of mammal community by

filtering the image records for each species of mammal to derive

the number of events per hour, hence avoiding that multiple

images of the same individual pausing in front of the camera trap

were scored as multiple events [29]. We then computed a relative

abundance index (RAI) as the number of events divided by

sampling effort and multiplied by 100 (i.e. events per 100 days of

camera trapping). We also computed the naı̈ve occupancy as the

number of camera trap sites occupied on sites sampled.

We derived a number of spatial environmental covariates

deemed relevant to explain both the spatial variations of species’

richness and occupancy of selected species using geoprocessing

tools available in ArcGIS. We calculated the following variables:

(1) distance from eastern park border (‘border’), (2) distance from

forest edge (‘edge’), (3) forest habitat type, i.e. montane forest and

lowland forest (‘habitat’), (4) slope and (5) distance to rivers. The

distance from each camera trap point to the nearest ‘border’,

‘edge’, or river segment was calculated in ArcGIS. Forest habitat

type was mapped using a supervised classification approach on

Landsat TM and ETM+ satellite imagery (30 m resolution).

Habitats were categorized into three forest types: 1) Montane, 2)

Deciduous, and 3) Regenerating. Forest habitat type was then

extracted for each camera trap point in ArcGIS. ‘Border’

correlated highly with elevation at camera trap sites given the

forest morphology of an east-west escarpment (Pearson’s r = 0.802,

P,0.001) and it is considered a proxy of decreasing anthropo-

genic disturbance, which may be mainly associated to firewood

collection and pole/timber cutting [30]. After checking that no

collinearity existed among the covariates used, these were

standardized to have mean 0 and unit variance before estimating

the model coefficients.

As a fundamental measure of the community structure, we

analysed species richness under three different perspectives and

with different aims. (1) Species accumulation curve with cumula-

tive camera trap days was used to check if data collection lasted a

sufficient number of days to virtually capture the total number of

species. The order in which samples (they consisted of number of

events per day) were included in the curve was randomized 1000

times and results were used to derive 95% confidence intervals

around the mean [31]. Even though this approach ignores

imperfect detection of individual species, it is useful for comparison

with other studies [32,33]. (2) Analysis of species richness that

accounts for imperfect detection was studied using the model by

Dorazio and colleagues [23], which requires repeated temporal

replications to resolve the ambiguity between species absence and

non-detection when species are unobserved at sample locations.

This Bayesian approach combines community-level and species-

level attributes in the same framework, allowing either commu-

nity-level or species-level parameters to be evaluated. Such

flexibility is not matched by other methods for estimating species

richness [23]. The frequentist approach to the same problem is

possible, but computationally intensive to implement [23]. The

model was specified in BUGS language and fitted to data using

WinBUGS and the package ‘R2WinBUGS’ in R software [34,35].

Simulations were executed with five Markov chains; 55,000

iterations for each chain, discarding 5,000 iterations at the

beginning (burn-in) and setting the thinning rate to 50. This

returned 5,000 samples from the posterior distributions. (3) We

used the occupancy analysis framework to investigate possible

relationships between species richness and environmental covar-

iates [19,36]. In particular, we compared two sets of models: (1)

testing the effect of environmental covariates on the occupancy of

all the species (species richness), and (2) testing if trophic guild

(carnivores, herbivores, omnivores, insectivores) and body mass

(data from [37]) were related to detection probability. Akaike

Information Criterion (AIC) was used to rank all the candidate

models and calculate their Akaike weights [38]. To achieve intra-

guild homogeneity, we discarded elephant (Loxodonta africana)

and buffalo (Syncerus caffer) among the herbivores for their large

body mass and movement habits (i.e. they periodically move into

the forests from drier habitats in the park). Among the carnivores,

the bushy-tailed mongoose (Bdeogale crassicauda) was discarded

because it is a common, non-elusive, and partially omnivorous

species; hence it effectively represents an outlier in the carnivore

guild.

We also used occupancy [17] as the species-specific state

variable of abundance to assess differences across species under an

unbiased framework and determine covariates of both occupancy

and detection probability for a set of species. We used scripts

already developed [8] and implemented in R to arrange the

TEAM data (http://www.teamnetwork.org/) into a list of species’

occupancy matrices. Data for each species were arranged as
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matrices of sites by surveys (i.e. sampling occasion). Each entry

indicated if the species was observed at site i on survey j or not. If

the species was observed at site i on survey j, then the entry was

given a score of 1. If the species was not observed, then the entry

was given a score of 0. NA indicated site i was not sampled on

survey j. The species-specific occupancy matrix had a resolution of

five days.

We used these matrices as the input for the single-season

occupancy model [19]. We modelled both estimated occupancy

(Y) and detection probability (p) with and without covariates. A

common set of models was used for all the species. In addition to

the null model, that assumes constant Y and p (i.e. Y(.), p(.)), for

other models p was allowed to vary by distance to border and

distance to edge. In both cases, our hypothesis was that animals

would be more elusive near the border and/or the edge because of

greater disturbance [30]. Four covariates for Y were the following:

(1) ‘border’, (2) ‘edge’, (3) ‘river’ and (4) ‘habitat’. Numerical

covariate were standardized into z-scores and included both

individually and in combination. We used the Akaike Information

Criterion (AIC) to rank candidate models and calculate their

Akaike weights [38]. In the case of top-ranked models with similar

AIC (and weight .0.01), we applied a model-averaging technique

to estimate occupancy from these multiple models [38]. Occu-

Figure 2. Species accumulation curve for the community of
medium-to-large mammals detected by camera trapping.
Detection of species is randomized 1000 times and results used to
derive the 95% confidence intervals of the mean.
doi:10.1371/journal.pone.0103300.g002

Figure 3. Posterior distribution of species richness. The analysis follows Dorazio et al. (2006). The posterior probability that the community
comprises only 26 species (vertical line is the observed species richness) is essentially zero, and the estimated median and mean values of species
richness are 32.0 (67.04 SD) and 34.3, respectively (26–54 CRI 95%; CRI = credible intervals).
doi:10.1371/journal.pone.0103300.g003
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pancy analysis was performed using the package ‘unmarked’ in R

[39]. The relative importance of the model parameters were

calculated with the R package AICmodavg [40]. Once we

identified the best occupancy model (or the average of the best

models), we mapped occupancy probability across Mwanihana

forest by deriving occupancy estimates from covariates computed

on a spatial grid with a cell size of 100 m.

Results

Of the 60 camera traps set, two malfunctioned and the

remaining 58 accumulated 1,818 camera days (mean 31.34)

yielding 10,647 images of mammals. The list of 26 species

recorded and standard descriptors are reported in Table 1. The

range of species captured per camera was 3–10 (median 6). Four

species were recorded with .100 events in this order: (1) Harvey’s

duiker (Cephalophus harveyi), (2) giant-pouched rat (Cricetomys
gambianus), (3) bushy-tailed mongoose and (4) suni. Six species

scored .20 and #100 events: (1) Abbott’s duiker (Cephalophus
spadix), (2) Tanganyika mountain squirrel (Paraxerus vexillarius),
(3) grey-faced sengi (Rhynchocyon udzungwensis), (4) Sykes’

monkey (Cercopithecus mitis) and (5) tree hyrax (Dendrohyrax
validus). The remaining 16 species scored #20 events, of which 10

species scored #5 events. The accumulation of species detected

with sampling effort was initially steep, but by 1,000 camera days

the majority of species were detected (24 species, or 92%; Fig. 2).

The estimated size of the community according to [23] exceeds the

number of species observed in the sample by a substantial margin,

with median and mean values being 32 and 34.3, respectively

(Fig. 3).

The modelling of species richness using a sub-set of 23 species

revealed no support for the null model, with several models having

lower AIC, and five that were top-ranked with delta AIC,3

(Table 2). Model averaging using these first five models shows that

no environmental covariates affected relative species richness.

However, there is a significant influence of the functional guild on

the detection probability (Table 3). Herbivores had the highest

detection probability (0.5260.03 SE), followed by omnivores

(0.2060.02 SE), insectivores (0.0960.02 SE) and carnivores

(0.0660.02 SE; Fig. 4).

We could fit occupancy models for the 11 most recorded

species. We initially considered 14 species with $10 events or

naı̈ve occupancy $0.1; however, for three of these (Genetta
servalina, Loxodonta africana, Hystrix africaeaustralis) the models

did not converge. For these 11 species, y ranged from 0.25–0.86

and p ranged from 0.10–0.51. The null model was not supported

for any of these species, and at least one of the covariates

considered affected significantly or marginally significantly y and

p (Table 4). Details of model selection for each species are shown

in Table S1.

The main patterns of predicted y and the functional

relationships of y with the dominant covariate represented by

the four species shown in Fig. 5 are as follows:

(1) As a ‘montane forest dweller’, Sanje mangabey’s y is positively

associated with montane forest habitat and not affected by any of

the other variables. Hence, predicted occupancy falls in two values

of 0.3460.12 SE in lowland, deciduous forest and 0.7660.10 SE

in montane, evergreen forest.

(2) In contrast with the above, suni is a ‘lowland forest dweller’,

with y being negatively related to montane forest habitat; hence,

Table 2. Summary of model selection outcome for predictions of mammal species’ richness in the Udzungwa Mountains of
Tanzania.

Model
Number of
parameters AIC Delta AIC weight Cumulative weight

y(.) p(mass, guild) 6 1151.59 0.00 0.410 0.410

y(.) p(guild) 5 1152.57 0.98 0.250 0.660

y(habitat, species) p(mass, guild) 7 1153.59 2.00 0.150 0.810

y(border) p(guild) 6 1154.56 2.97 0.093 0.910

y(habitat) p(guild) 6 1154.56 2.98 0.093 1.000

y(.) p(.) 2 1323.63 172.04 0.000 1.000

The top-ranked models are shown (delta AIC ,3) followed by the null model.
doi:10.1371/journal.pone.0103300.t002

Table 3. Summary of model averaging for the effect of environmental covariates on species richness (y) and detection probability
(p) of the mammal community in the Udzungwa Mountains of Tanzania.

Model Estimate SE Z P(.|z|)

p(mass) –0.136 0.08 1.704 0.089

p(herbivores) 2.860 0.31 9.345 ,0.001

p(insectivores) 0.380 0.37 1.040 0.298

p(omnivores) 1.327 0.30 4.497 ,0.001

y(habitat - montane) 2.814 292.60 0.010 0.992

y(border) 1.273 628.75 0.002 0.998

See Table 2 for the covariates modelled with both y and p.
doi:10.1371/journal.pone.0103300.t003
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indicating preference for lowland forest. In addition, the species’ y
is marginally affected by distance to park border, with predicted

occupancy decreasing in the proximity of park border relative to

more interior zones of lowland forest. Its detection probability also

significantly increased with distance to edge.

(3) The Harvey’s duiker is a typical ‘edge lover’ species, as y is

negatively affected by distance to edge, which is clearly seen in the

spatially-explicit model. Therefore, the species avoids interior

forest, with predicted y declining sharply and non-linearly after

1.5–2 km from the forest edge.

(4) An opposite pattern is shown by the grey-faced sengi, which

seems to be an ‘edge avoider’ with y being positively affected by

distance from edge and preference for montane habitat and both

associations being marginally significant (0.05,P,0.1).

For approximately half of the species, detection probability

varied with distance to the park border and/or distance to the

forest edge (Online Resource 1). We portray two limiting cases

(Fig. 6): (1) the bushy-tailed mongoose, where p decreased linearly

with the distance to park border, and (2) the Abbott’s duiker,

where p exponentially increased with distance to border.

Discussion

Our study shows how camera trap data collected using a robust,

standardized field methodology, and analysed with statistical

approaches that account for imperfect detection and incorporate

ecological factors, can provide a robust baseline assessment of

mammal communities in tropical forests. In particular, we

estimated species richness using a sampling protocol requiring

repeated observations at sample locations. This approach provided

information needed to resolve the ambiguity between species

absence and non-detection. The Bayesian analysis used [23] is a

flexible alternative to the classic frequentist approach, which is

computationally complex, and combines community-level and

species-level attributes in the same modelling framework. We also

determined how simple ecological covariates such as gross habitat,

distance to forest edge and distance to park border explain the

occupancy of most species in the community. Finally, we provided

a framework for deriving spatially-explicit, fine resolution models

of estimated species occupancy in relation to covariates, which

represent a valuable tool for conservation management of

threatened and/or poorly known species.

The efficiency of camera trapping for inventorying species has

already been indicated by other studies of tropical mammal

communities [33,41]. In the Udzungwas, additional camera

trapping effort and scattered sighting reports indicate that at least

four species have been ‘missed’ by the present survey (bushbuck

Tragelaphus scriptus, spotted hyena Crocuta crocuta, cane rat

Thryonomys swinderianus and serval cat Leptailurus serval; FR

unpublished data). Other small, elusive carnivores may also be

present in the target forest [42]. This observation is supported by

our models, which estimate that .30 species occur. It is worth

noting that the classic species richness estimators, parametric and

non-parametric, asymptotic and non-asymptotic, rely on extrap-

olations of the species accumulation curve and do not account for

imperfect detection [31,43]. The explicit incorporation of detec-

tion probability in the models we used is particularly important in

estimating species richness of communities that contain a

preponderance of rare, or difficult to detect, species [44]. In these

cases, using traditional approaches may yield incorrect inferences

if heterogeneity in detectability exists among species or if the

effects of environmental covariates on occurrence differ among

species.

In terms of species composition, the pool of ten most-detected

species (.20 events) reveals the relative high occurrence of a

number of species that are poorly known, and poorly detected

using alternative methods. For example, the Abbott’s duiker is a

IUCN-Endangered ‘giant’ duiker endemic to and found only in a

handful of montane forests in Tanzania, including the Udzungwa

population considered to be the stronghold, and was the third

most common species in terms of occupancy, y = 0.72 [28,45].

Similarly, the fourth most common Sanje mangabey (y = 0.62) is a

predominantly terrestrial forest monkey endemic to only two

forests in the Udzungwa mountains and classified as Endangered

[28]. Being terrestrial and elusive, this monkey is poorly sighted

from line-transects despite living in large groups of up to 50

individuals [46], and hence it is so far regarded as rarer than our

data reveal. Among other commonly detected species, the

relatively high ranking of tree hyrax (y = 0.48) is also surprising

given this is known as an arboreal dweller [47]. Our data show

that tree hyraxes spend more time on the ground than previously

thought. It is also worth mentioning the 11th position in the

occupancy ranking of the Udzungwa-endemic and IUCN

Vulnerable grey-faced sengi (or elephant-shrew), a species

described in 2008 which is very rarely seen despite being diurnal,

Figure 4. Detection probability by functional guild. Values are from the model averaging of relative species richness of the mammal
community in the Udzungwa Mountains of Tanzania. Bars are 95% confidence intervals.
doi:10.1371/journal.pone.0103300.g004
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and for which Mwanihana holds approximately half of the global

population [48]. The pool of least-detected species contains a

number of truly arboreal mammals, typically the two colobine

monkeys that are common in high densities across the forest [46],

which are completely explained by their habit. Besides these

‘exceptions’, the other least-detected species are a diverse suite of

less common (e.g. bush pig, Lowe’s servaline genet), or rare

animals for the target forest (e.g. leopard, marsh mongoose), in

addition to species that are mainly found in savannah and/or in

the deciduous woodland occurring at the lower edge of

Mwanihana forest (e.g. yellow baboon, African civet, banded

mongoose, honey badger).

It is not surprising that we did not find any significant pattern of

variation of estimated species richness across camera trap sites

because Mwanihana forest has continuous forest cover without

drastic habitat changes, except for the gradual variation in habitat

type that broadly follows altitudinal and edge versus interior

gradients. Whilst the species-specific occupancy models do

highlight clear patterns of ecological preference by a suite of

species, these preferences do not hold across the whole commu-

nity. Interestingly, we found that the trophic guilds have

significantly different detection probabilities. The low detectability

of carnivores and insectivores matches their generally greater

elusiveness relative to omnivores and herbivores. In contrast to our

expectations, detection probability of species decreases with body

mass, although the relationship is marginally significant (Table 3).

Previous studies examining the effect of body mass on the animal

detection process by camera traps suggest that small species are

more likely to be missed due to the sensitivity and dimensions of

the detection zone of the camera sensor [33,49]. However, this

aspect did not appear to have a statistical effect within the range of

body mass in our study, perhaps because of the high sensitivity of

the camera model we used. The relationship we found may rather

reflect inter-specific behavioural differences, with larger species

being less detected because of their greater elusiveness.

The species-specific occupancy analysis generally revealed novel

ecological knowledge for roughly half of the species included in the

analysis, excluding the strictly arboreal ones and those that are not

typical forest-dwellers (see considerations above). The need to

include corrections for imperfect detection in the modelling

process is clearly shown by the remarkable variation of p among

species (range 0.096–0.505; see Table 4). Because of this variation,

the difference between naı̈ve and estimated occupancy is also

varying, and for the least-detectable species (p,0.2), the increment

between naı̈ve and estimated occupancy is 54–109% the naı̈ve

occupancy (see Table 4). The importance of allowing y and p to

vary with covariates is shown by the fact that the null model was

the least supported for any species. This is shown by a number of

previous studies that investigated habitat associations from camera

trapping data in an occupancy framework [21,22,36,50]. To

achieve similar inference for the remaining half of the species (p,

0.1), a large number of sites should be surveyed [44]. Alternatively,

one could pool data for more than one season under the

assumption of a closed community (e.g. occupancy status does

not change among survey seasons [22]).

The four limiting cases we highlighted show the particularly

relevant ecological and conservation implications of our approach.

For example, ecological knowledge on the Sanje mangabey was

limited to results from a single, long-term focal group study located

in the lower part of the forest [46,51] before our analyses. There

also was a lack of general understanding of their occurrence across

the entire forest, which includes about half of the global

population. Our results indicate that the species’ occupancy in

montane forest is more than double than in lowland forest, which
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in turn suggests the vulnerability of this species to both human-

induced (e.g. logging and forest degradation), stochastic (e.g. fires)

and climate change impacts. The limit of using a categorical and

broad classification of habitat type for this and other habitat-

sensitive species may be overcome in future studies by collecting

fine-scale vegetation and human disturbance data at camera trap

sites for consideration in the modelling [22,52]. Similar consider-

ations apply to the results for the grey-faced sengi, whose

preference for forest interior and edge avoidance matches the

results from a recent focal study on habitat associations [22].

While the forest antelope community has been previously

studied using camera trapping [29,52] the fine grain occupancy

models we derived shed new light into the occurrence of these

species. Suni and Harvey’s duiker occur predominantly in the

lower forest with the latter occurring across the forest edges. This is

relevant to the need to protect the full array of forest cover,

including the lower elevation areas, which border densely

populated settlements. The preference of Harvey’s duiker for

edges also indicates its suitability as an indicator of connectivity

between forest blocks across marginal, often riverine habitat,

which is important in highly heterogeneous areas such as the

Udzungwas.

Despite a minority of species whose detection probability did

not vary significantly with the covariates used (e.g. distance from

edge and from border), the general finding is assuming that

constant detection is broadly incorrect. Care needs to be taken

when choosing covariates for p to ensure they are meaningful,

which may be related to assumptions on the differences in the

density of vegetation across camera trap sites. This assumption, in

turn, may affect the efficiency of camera traps to capture an image

of passing animals. In addition, variation in detectability may be

due to differential animals’ shyness in relation to human

disturbance and/or density of vegetation on the forest floor

compressing the field of view of camera traps. These results may

indicate a pattern of lower detectability in areas that are closer to

human disturbance (e.g. border) and/or habitat ‘disturbance’ (e.g.

border and edge), where forest floor vegetation is generally denser

due to higher canopy degradation than in forest interior, and

include animals that are more shy. The few cases of a negative

relationship between p and one of the two covariates may also be

explained by species-specific habits. For instance, the Sykes’

monkey’s p is negatively related to edge, which fits with the habit

of this opportunistic primate to move easily among dense,

degraded and regenerating vegetation in forest edge [30]. Similar

considerations may also be valid for the bushy-tailed mongoose, a

small, nocturnal and opportunistic carnivore that is often sighted

by the park border and forest edge (FR unpublished data).

Conclusions

Our study applied a robust analytical framework to profiling

tropical mammal communities detected by the standard camera

trapping protocol adopted by the TEAM Network. With the

network currently made of 16 sites across three continents and

progressively expanding (http://www.teamnetwork.org), and a

number of studies adopting similar designs outside the network

[36], there emerges a growing need for standardized analytical

procedures to facilitate and enhance the sound use of the large

data-sets being accumulated. In turn, detailed and site-specific

baseline analysis will help interpreting patterns of community

composition and changes from multi-site comparisons [8].

Similarly, with data collected from a number of sites for .5

years, baselines such as ours are relevant to the interpretation of

temporal trends in species and community occupancy, for which

robust and standardized analytical procedures have recently been

proposed, including the Wildlife Picture Index [2,14].

Figure 5. Spatially-explicit occupancy models. Maps of predicted occupancy (left) and functional relationship between the most relevant
covariate and y (right, with confidence intervals indicated by dashed lines) for four mammals in the Udzungwa Mountains of Tanzania, representing
limiting cases in occupancy pattern: (A) Sanje mangabey, a montane evergreen forest species; (B) suni, a lowland deciduous forest species; (C)
Harvey’s duiker, an edge-lover and disturbance-tolerant species; (D) grey-faced sengi, an edge-avoider and disturbance-sensitive species.
doi:10.1371/journal.pone.0103300.g005

Figure 6. Graphs of predicted detection probability. Values are modelled with distance from the park border for (A) the bushy-tailed
mongoose, and (B) the Abbott’s duiker, in the Udzungwa Mountains of Tanzania. Confidence intervals are indicated by dashed lines.
doi:10.1371/journal.pone.0103300.g006
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The ultimate relevance of standardizing tropical mammal

community assessments rests in the need to develop indicators

for distribution and abundance of pan-tropical species, as outlined

by the Convention on Biological Diversity [2,14]. In this context,

our study offers an example of how analysis of species’ richness in

occupancy framework, focal species’ occupancy and their spatial

variation relative to a suite of covariates, represents a useful

approach for comparing data from several sites, and hence for

deriving indicators for these global targets.

Supporting Information

Table S1 Model selection details for the 11 species for
which occupancy and detection probability were mod-
elled with covariates.
(DOCX)
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